
 

Ahmad, S Rehan                                 Emrg. Trnd. Nutr. (2022) 1(2), 42-50     ISSN: 2583 – 4606 

Copyright © May-August, 2022; ETN                                                                                                              42 
 

 

 

           

 

 

 

 
  Peer-Reviewed, Refereed, Open Access Journal 

 

Artificial Intelligence: Use in Clinical and Genomic Diagnostics 
   

S Rehan Ahmad* 

Assistant Professor, Dept. of   Zoology,  

Hiralal Mazumdar Memorial College for Women, Dakshineswar, Kolkata, West Bengal  

*Corresponding Author E-mail: zoologist.rehan@gmail.com 

Received: 10.01.2022 | Revised: 24.02.2022 | Accepted: 8.03.2022  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 
 

 

INTRODUCTION   

The interdisciplinary discipline of biology 

known as genomics focuses on the 

investigation of genome structure, function, 

mapping, and editing. The entire collection of 

an organism's DNA, including its genes, is 

known as its genome. We can divide genomics 

into numerous subgroups, including control, 

structure, and function genomics. Machine 

learning and artificial intelligence have an 

impact on almost every business. Healthcare is 

not an exception. The business community has 

traditionally accepted innovations, and more 

and more researchers are focusing on 

developments in artificial intelligence. 
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ABSTRACT 

The development of computer systems that are capable of carrying out tasks that typically 

require human intelligence is known as artificial intelligence (AI). Recent and quickly rising 

interest in medical AI applications is a result of AI software and technology improvements, 

especially deep learning algorithms and the graphics processing units (GPUs) that enable their 

training. While other AI subtypes have started to show similar promise in different diagnostic 

modalities, AI-based computer vision methods are poised to change image-based diagnostics in 

clinical diagnostics. Large and complicated genomic datasets are processed using a particular 

form of AI algorithm known as deep learning in various fields, such as clinical genomics. In this 

review, we first provide an overview of the primary categories of issues that AI systems are best 

adapted to address, followed by a description of the clinical diagnostic tasks that are aided by 

these solutions. Then, we concentrate on recently developed techniques for certain clinical 

genomics applications, such as variant calling, genome annotation and variant categorization, 

and phenotype-to-genotype correlation. We conclude by talking about the future potential of AI 

in individualized medicine applications, particularly for risk prediction in common complex 

diseases, as well as the issues, constraints, and biases that must be carefully addressed for the 

successful deployment of AI in medical applications, particularly those using data from genomics 

and human genetics. 
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One of these disciplines is genomics. Machine 

learning has a growing role to play in the 

development of this field. Researchers can 

analyze the growing volume of genetic picture 

data by combining deep learning and computer 

vision techniques. Machine learning models 

can handle computer vision tasks like semantic 

segmentation, image identification, and image 

extraction (Rahman et al., 2020). By 

combining machine learning and natural 

processing methods, a large volume of 

genomics-related material that can be 

discovered in publicly available scientific 

publications may be examined. Researchers 

may use this method to find solutions to issues 

like relationship extraction, information 

retrieval, or identifying named individuals. 

Due to the massive amount of research being 

done in this area right now, some systems are 

suited for use with natural language processing 

tasks (Donepudi et al., 2020).  

Background Information and Insights on 

AI and Genomics  

The ability to read a person's genetic code, 

which controls how they behave, is made 

possible through DNA sequencing. History is 

provided by summarising the fundamental 

scientific principles along the pathway from 

DNA to RNA to protein. DNA comprises the 

basic matches In light of the four essential 

units (A, C, G, and T) known as nucleotides, A 

pairs with T and C pairs with G. People's 

chromosomes are divided into a total of 23 

sets.  

 

 
Figure 1: AI is the next big player in genomics 

 

Chromosomes are more closely coordinated 

into DNA-based protein-producing or protein-

encoding units known as genes. The number of 

attributes that a thing possesses is called its 

genome. A person has about 20,000 

chromosomes and 3,000 billion base sets. 

Focusing on genomics research and business, 

just 2% of the human genome is used to 

encode proteins. It is a simple region. 

Genomic research is closely related to 

accuracy. Precision medicine, also known as 

tweaked medicine, is a field of medicine that 

integrates science, viewpoints, and networks 

with the aim of applying patient- or 

population-specific clinical mediation rather 

than a one-size-fits-all methodology. Its 

market size is predicted to reach $87 billion by 

2023. For instance, to reduce the likelihood of 

entanglements, a guy who requires blood 

bonding will be matched to a donor with a 
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similar blood categorization rather than a 

randomly chosen donor. High costs and 

infrastructural limitations are the two main 

barriers to the wider adoption of precision 

medicine. The enormous amount of patient 

data that needs to be collected and processed is 

being addressed by many researchers using 

machine learning techniques to cut costs. 

Fortunately, even with a significant relative 

fall in expenses between 2007 and 2012, the 

cost of decoding a genome tends to reduce 

annually for researchers and genomics 

companies. 

AI and machine learning applications in 

genomics 

The use of genetic testing and clinical 

administrations are affected by new machine 

learning technologies in the field of genomics, 

which opens up the field to those interested in 

knowing how their ancestry may affect their 

well-being.  

Gene sequencing 

DNA sequencing is the process of determining 

the nucleic acid sequence or the order of the 

nucleotides in DNA. Any technique or 

technology that is 44utilized to determine the 

order of the four bases adenine, cytosine, 

guanine, and thymine is necessary. The field 

of whole genome sequencing (WGS) has 

become more popular in clinical diagnostics. 

Cutting edge sequencing has become a popular 

term that refers to cutting edge DNA 

sequencing techniques that aid in grouping by 

researchers. 

 

 
Figure 2: Genome sequencing 

 

Organizations like Deep Genomics make use 

of machine learning to assist researchers in 

interpreting genetic variance. To help clients 

comprehend how crucial cellular processes are 

influenced by genetic diversity, algorithms are 

constructed based on patterns observed in 

large genetic data sets and then transformed 

into computer models. Cellular processes 

include, but are not limited to, DNA repair, 

metabolism, and cell formation. Theoretically, 

disruption of these pathways’ normal function 

will result in disorders like cancer. 

Three American venture capital firms have 

contributed $3.7 million in seed funding to the 

2014-founded Toronto-based enterprise. In 

fact, it's said that Deep Genomics' backers 
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advised the company to stay in Toronto and 

grow there rather than move to Silicon Valley. 

The choice will take into account the Canadian 

government's recent grant of $125 million 

(Canadian dollars) for the Pan-Canadian 

Strategy for Artificial Intelligence. Deep 

Genomics has mentioned seven scientific 

publications as of April 2017, the majority of 

which predict or hint at potential genetic 

variations. However, this study's pertinent 

results have not yet been published in terms of 

diseases or potential treatments.  

Editing the Gene 

Gene editing is the process by which minute, 

exact alterations are achieved at the cellular 

level. The CRISPR system is thought to be the 

tool used for genome editing. It quickly and 

inexpensively completes editing. The 

researcher should select an appropriate aim 

sequence before using CRISPR. This complex 

system, which involves several choices and 

unpredictable outcomes, can be intimidating. 

The potential exists for machine learning to 

significantly reduce the time, price, and effort 

required to design a suitable sequence of goals.  

 

 
Figure 3: CRISPR gene editing 

 

The London-based startup company Desktop 

Genetics is where AI and CRISPR meet. Since 

their formation in 2012, 7 investors have 

raised $5.8 million in total equity investment, 

including accelerators, venture capital firms, 

and DNA sequencing pioneer Illumina. The 

company cites two important findings from a 

previous study, namely that the precision of an 

algorithm's capacity to predict CRISPR 

behaviour grows with an increase in the 

volume of training data and decreases when 

applied to a particular animal, such as mice 

versus humans. None of these findings was 

particularly surprising, and Desktop Genetics 

acknowledges that further investigation would 

be necessary to improve procedures and test 

the limitations of how CRISPRR can influence 

machine learning.  

Pharmacogenomics 

The technique focuses on how genes affect 

how an individual responds to medications. 

The relatively new field combines 

pharmacology (drug science) and genomics 

(genetic testing and its uses) to create 

trustworthy and safe medications and dosages 

that are tailored to a person's genetic makeup. 

Despite the fact that machine learning is still a 

very new science, there is evidence of studies 

in this area. For example, what is regarded as 

the first study to use machine learning 

algorithms to assess a safe dose of tacrolimus 

in patients with renal transplantation was 



 

Ahmad, S Rehan                                 Emrg. Trnd. Nutr. (2022) 1(2), 42-50     ISSN: 2583 – 4606 

Copyright © May-August, 2022; ETN                                                                                                              46 
 

published in February 2017. Tacrolimus is 

typically administered to patients after 

successful organ transplantation in order to 

prevent acute rejection of new organs.  

Methods for Newborn Screening  

Experts anticipate that baby genetic screening 

will spread throughout society within the next 

ten years. The EHR of each person would be 

properly updated with information from the 

time of birth, and women who are 

breastfeeding would have access to non-

intrusive screening tools for real issues like 

Down syndrome. The National Taiwan 

University Hospital's infant screening centre 

utilized AI to increase the accuracy of their 

online infant metabolic deformity screening 

system. Newborn genetic testing is becoming a 

more common practice. This non-invasive 

genetic screening can be used to identify 

diseases like Down syndrome at birth. 

Artificial intelligence can predict outcomes 

and the dangers involved in the treatment of 

genetic illnesses based on the evidence 

currently available.  

For agriculture 

The potential for genomics to improve soil 

quality and crop output in the agriculture 

sector is a new area of worry and optimism. 

Through its Illumina Accelerator programme, 

Illumina has provided financial support to 

business owners in California. To develop 

diagnostic tools for crop disease prediction and 

prevention, the startup is said to combine 

genomics and machine learning. The company 

is now called Trace Genomics and appears to 

have shifted its emphasis to soil health. If 

genetic data can be utilized to predict 

agricultural output or health, it may help 

farmers better forecast and maximize yields 

(and the resulting effects on soil). The global 

gains in crop yields may also increase the scale 

at which those improvements are applied, 

brought about by earlier genetic changes.  

AI in Clinical Genomics 

The AI algorithm aims to mimic human 

insight (Donepudi, 2017). However, when it 

comes to using traditional numerical 

techniques, AI in medical genomics tends to 

focus on tasks that are wasteful to do with 

human expertise and defenceless against error. 

Numerous of the aforementioned methods, 

such as variant calling, genome explanation, 

variation marking, and correspondence from 

aggregate to genotype, have been altered to 

determine the various advancements connected 

with clinical genomic research. At some point, 

they may also be used to make predictions of 

genotype-to-aggregate. Here, we recognize the 

critical categorizations of problems 

investigated by AI in clinical genomics. 

Variants Calling 

Clinical genome understanding is helpless in 

the face of recognition, severe explicitness of 

individual hereditary variants within the huge 

numbers populating every genome, etc. 

Specific errors associated to test preparation 

nuances, sequencing innovation, grouping 

foundations, and the frequently unanticipated 

effects of science, such as physical mosaicism, 

are defenceless against standard variation-

calling apparatuses (Li, 2014). Combining 

quantitative approaches with hand-created 

features, such as strand-predisposition or 

populace level conditions, was done to identify 

these problems, leading to high exactness but 

biased errors (DePristo et al., 2011).  

AI computations may use a single genome 

with the perceived greatest quality level of 

reference variant calls to gather these 

inclinations and make unmatched variant calls. 

Deep Variant, a CNN-assembled variant caller 

that is legitimately prepared for perusing 

setups without any in-depth knowledge of 

genomics or sequencing stages, has recently 

been discovered to exceed the benchmark. 

(2018) Poplin et al. It is anticipated that the 

increased exactness results from CNNs' ability 

to recognize changing situations when 

sequencing information. Furthermore, ongoing 

studies demonstrate that deep learning can 

improve base-calling accuracy (and, 

consequently, variation distinguishing proof) 

for nanopore-based sequencing innovations 

that have traditionally attempted to compete 

with established sequencing innovation due to 

the error-prone nature of earlier base-calling 

algorithms (Wick et al., 2019).  
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Genome explanation and variant order 

After variant calling, the analysis of the 

humanoid genome results is dependent on the 

distinct evidence provided by prior knowledge 

of certain hereditary variants and the suspicion 

of the influence of practical genomic elements 

on hereditary variation. Calculations based on 

artificial intelligence can encourage the use of 

earlier data by providing phenotype-to-

genotype planning. Here, the identical amount 

of AI computations that were used to predict 

the presence of a useful component from 

crucial DNA grouping information is also 

employed to predict the effects of a hereditary 

minor deviation from such useful components, 

both genome explanation and variation.  

Classification of coding variants 

The nonsynonymous variants have been 

grouped in several ways (Tang & Thomas, 

2016). When combined with either of these 

methods using relapse or other AI draws near, 

meta indicators (models that loop and 

aggregate the expectations generated by a few 

different indicators) that are focused on deep 

learning outperformed both their individual 

prescient segments and the combination of 

those prescient segments (Kircher et al., 2014). 

For instance, the combined annotation-based 

depletion approaches (CADD) in an AI system 

integrate different prophetic traits to forecast 

the harmfulness of inherited variants. A deep 

learning-based development of CADD known 

as DANN demonstrated improved 

performance using the same arrangement of 

informational components as CADD but 

combined in a profound neural organization 

(Quang et al., 2015). This specific 

development of CADD demonstrates how 

profound learning may be a very effective 

method for fusing well-known traits that 

indicate negative consequences.  

Classification of noncoding variants 

The algorithmic discovery and prediction of 

noncoding pathogenic variation is an unsolved 

problem in human genomics (Chatterjee & 

Ahituv, 2017). Recent research suggests that 

AI algorithms improve our capacity to 

interpret genetic variation that does not code. 

Splicing abnormalities in genes are caused by 

at least 10% of uncommon harmful genetic 

mutations. However, they can be challenging 

to define due to the complexity of enhancers, 

silencers, isolators, and other combinatorial 

and long-range DNA interactions that affect 

the splicing of the genes (Soemedi et al., 

2017).  

Phenotype-to-genotype mapping 

Independent of personal health state, a person's 

genetic composition contains a variety of 

inherited variants that have lately been 

identified as pathogenic or are anticipated to 

be harmful (Telenti et al., 2016). As a result, 

for a subatomic analysis of the disease, the 

identification of pathogenic fluctuations as 

well as the assurance of communication 

between the collective of the unwell creature 

and those predicted to happen from every 

incoming pathogenic variation, are also 

crucial. The mapping of phenotype to 

genotype may be greatly enhanced by 

computer-based intelligence algorithms, 

notably by removing more important level 

symptomatic rules implemented in clinical 

images and EHRs. 

Genotype-to-phenotype prediction  

The ultimate therapeutic goal of genetics is to 

incorporate forecasts and diagnoses of future 

illness risk. Risk classification for several 

frequent complex disorders is made possible 

by very simple statistical methods that are both 

clinically and personally valuable (Torkamani 

et al., 2018). Some studies have tried to depict 

unpredictable humanoid traits using AI 

algorithms gnomically. However, the majority 

of those documented so far in writing are 

likely to overfit because they allegedly depict 

significantly more variety in traits than should 

be practically based on heritability gauges. 

One application of AI to genetic stature 

expectation has the potential to provide 

sensible, reliable estimations within expected 

cutoff points, illustrative of the potential for 

AI-based to enhance computational 

approaches. However, combining multiple 

forms of health data and risk variables into 

potent infection hazard indicators is likely to 

be the benefit of AI-based approaches dealing 
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with genotype-to-phenotype expectation (Lello 

et al., 2018). 

  

CONCLUSION 

Machine learning in genomics is already 

changing a number of touchpoints, such as 

how genetic testing is conducted, how doctors 

provide medical care, and how easily 

consumers can access genomics to learn more 

about how their heredity can affect their 

health. With a greater interest in this subject, 

readers may want to study our recent piece on 

the uses of machine learning in medicine and 

pharma. Smart business is an attempt to 

implement AI to help accelerate the journey 

from bench to bedside and make precision 

medicine more widely used (Donepudi, 2018). 

Organizations that can provide real, workable 

solutions to precision medicine's difficulties 

may also benefit from such efforts. Despite the 

fact that there is a lot of hope, it is still tough 

to compete for precision medicine because 

many doctors are looking for additional 

information on the therapeutic value, and 

insurance companies are not seeing it as a 

need. Therefore, in addition to machine 

learning's capacity for data interpretation, 

education and clear examples of the value and 

significance of this technology would be 

required. Pharmacogenomics is a key area of 

the rapidly developing machine learning 

technology in genomics; however, this is just 

one example of many potential futures uses. 

With little empirical evidence, however, only 

time will show which industries will benefit 

most from investing in AI. We will keep a 

close eye on the field of genomics because it 

will be a busy one with more machine-learning 

applications in the near future. 
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